
Dynamic Text for Unity
Dynamically updated pixel-perfect alternative for built-in Text Mesh, from Jetro Lauha / Strobotnik Ltd.

Table of Contents
Introduction
Upgrade Guide
How to add Dynamic Text to scene?
Fields and Methods of the Dynamic Text component explained
What features does Dynamic Text have?
What is it not good for ? (Known Issues)
Questions and Answers
Feedback, Feature Suggestions and Bug Reports

Introduction
This package contains the Dynamic Text component. It is meant for displaying pixel-perfect
camera-facing text, with size & position defined in world units. If compared to Unity's built-in text
components, Dynamic Text is sharp like built-in GUIText, but part of the scene like TextMesh.

HINT – Also check out this component's official web page: www.strobotnik.com/unity/dynamictext/

How to add Dynamic Text to scene?
You can either create a new game object, or add this component to an existing game object.

To create a new game object with Dynamic Text, choose from menu:
GameObject → Create Other → Dynamic Text

To add Dynamic Text to an existing game object, choose from menu:
Component → Mesh → Dynamic Text
NOTE – If the object has an existing Text Mesh, it'll be converted to Dynamic Text.

Note that the Dynamic Text needs to have a reference to the camera where it is meant to be
visible in. It will automatically grab the Camera.main (first camera with the "MainCamera" tag) if
there is one.

If you don't have a main camera, or if you want the text to be visible in a different camera, you
have to manually drag the correct camera from your Hierarchy view to the Cam field of Dynamic
Text component.

If you are using custom layer for text stuff, make sure to also set the Layer manually for your
Game Object (top of Inspector), and verify the Culling Mask of your Cameras.

Also from Strobotnik:

Google Universal Analytics for Unity

http://strobotnik.com/unity/googleuniversalanalytics/

Internet Reachability Verifier for Unity

http://strobotnik.com/unity/internetreachabilityverifier/

http://strobotnik.com/
http://www.strobotnik.com/unity/dynamictext/
http://strobotnik.com/unity/internetreachabilityverifier/
http://strobotnik.com/unity/googleuniversalanalytics/

Upgrade Guide
If you are upgrading from versions 1.0.0-1.0.2 to latest version, you might notice that direct
access to public dynamicText.text field is removed. You should now use the GetText() and
SetText() methods instead. This change allows streamlining of some code and helped to fix
quite a bunch of subtle bugs or limitations (for example, mesh generation is not anymore
deferred until Update() call).

Fields and Methods of the Dynamic Text component explained
The following list explains what fields are visible in Inspector of the Unity Editor. Below the
inspector name is field definition for script access (and its default value).

Cam
Camera cam;

Reference to the camera where this text is meant to be visible. Initialized
to Camera.main by default (first camera with the "MainCamera" tag).

Text
– (only in Inspector)

The text that is displayed, that is, to be generated as a mesh to this
object's mesh filter. You can also paste in text. The text can contain
newline and tab characters (”\n” and ”\t” when setting from code;
see Line Spacing and Tab Size).
NOTE: For script-updated and dynamically built strings you must use
either SetText(...) method or textSB field (StringBuilder). This field is
shown by custom inspector (defined in DynamicTextInspector.cs), which
updates text changes using SetText().

textSB
System.Text.StringBuilder textSB;

A string builder object which is used as the primary way to store current
text for Dynamic Text instances. (For a prefab the text is in
“serializedText” field).
NOTE: If you update text content directly by manipulating textSB, you
must also call FinishedTextSB() when you're done, which will also call
GenerateMesh().

– (not shown in Inspector)
string serializedText = “Text”;

The saved text. If you have reference to a dynamic text prefab object
instead of an instance, then you can access the text using this field from
scripts.
This field is visible only in the debug inspector view as normally you
should not need to see or adjust this field in the editor.

Offset Z
float offsetZ = 0;

Additional Z offset – how far should the text be offset from the
transform.position.z. Usually you'll just want to keep this as 0.

Size
float size = 0;

Approximate text size (height), measured in world units. Actual height
varies by font and by character, e.g. between upper- and lowercase
characters. The default value 0 is overridden to 1.0 for perspective
cameras or 10% of view height for orthogonal cameras.

Line Spacing
float lineSpacing = 1.25f;

Baseline-to-baseline distance between two rows of text.

Anchor
DynamicTextAnchor anchor =
DynamicTextAnchor.BaselineLeft;

Which point of the text shares the position of the Transform.

Alignment
TextAlignment alignment =
TextAlignment.Left;

How lines of text are aligned (Left, Center, Right).

Tab Size
float tabSize = 1.0f;

Size of a tab stop, measured in world units. A tab char in text moves to
the next tab stop. Note that this is defined differently when comparing to
built-in Text Mesh, which defines tab size just as a multiple of space
char.

Font Style
FontStyle fontStyle =
FontStyle.Normal;

The font style to use (Normal, Bold, Italic, BoldAndItalic), for the fonts
that support it. Depending on font, styles may look different by platform.

Font
Font font;

The Font to use. If no font is given, Unity's own default Arial is used by
default.
NOTE: For custom fonts, you should define Character field to be
“Dynamic” in the Font import settings for truetype (.ttf) fonts.

Auto Set Font Material
bool autoSentFontMaterial = true;

When enabled, the material in Mesh Renderer component will be
automatically set to the one from the Font. You should disable this if you
want to use your own custom material.

Color
Color color = Color.white;

The color used to render the text (used as vertex colors for the mesh).

Baseline Ref Char
string baselineRefChar = "x";

The baseline font metric is measured from a reference character, which
is usually the lower-case character “x”. Usually you don't need to change
this, but you may need to set a different character if you have a font
which has only certain characters like numbers or upper-case letters, for
example.
NOTE: For custom fonts, the character must be one which is defined in
the used font.

Metrics Ref Chars
string metricsRefChars =
"xgjpflXOQ09";

The ascent and descent font metrics are measured from the characters
given by this list of characters. Again, if your font has only a subset of
characters, you should change this field to contain a list of typical
characters you're using with that particular font.
NOTE: For custom fonts, the listed chars must be defined in the used
font!

Pixel Snap Transform
bool pixelSnapTransformPos = true;

When enabled, Dynamic Text will continuously snap the
transform.position to closest screen pixel boundary (as viewed
from the camera set in the cam field).

Min Font Px Size
int minFontPxSize = 6;

Minimum font size measured in pixels (not world units). It's
recommended to keep this as a small value like 6 or 10.

Max Font Px Size
int maxFontPxSize = 150;

Maximum font size measured in pixels (not world units). If your text can
occasionally be very very big or very close to camera, you can limit how
large it can be rendered in the font atlas. Usually a good value for this
field is something like 100 or 150.

Auto Face Cam
bool autoFaceCam = false;

When enabled, Dynamic Text will automatically auto-orient itself to face
its camera (like a billboard).

The following list describes public methods and properties you can use from scripts:

string GetText() Returns the current text as string. Internally this will need to allocate a new
string from textSB, so it is more optimal if you can just read the current text
contents directly from textSB instead.

void SetText(string newText) Easy way for setting a new text using a string. For dynamically built strings
it's recommended to use textSB and FinishedTextSB().

void FinishedTextSB() After manually updating new text contents to textSB, you must call this to
indicate you're finished. This will internally also call GenerateMesh() and
update the bounds.

Example:
 DynamicText dt = GetComponent<DynamicText>();
 int score = 7447;
 dt.textSB.Length = 0; // clear first
 dt.textSB.Append("Score: ");
 dt.textSB.Append(score);
 dt.FinishedTextSB();

void GenerateMesh() Call this if you have some reason that you want the dynamic text mesh to be
updated immediately.

Bounds bounds Bounds of the generated dynamic text mesh.
NOTE: You should not access the Mesh Filter for getting bounds but use
this instead.

float baseline Distance to baseline from arbitrary top reference Y.
(Calculated using Baseline Ref Char and Metrics Ref Chars.)

float ascent Distance from baseline to top of the glyphs.
(Calculated using Baseline Ref Char and Metrics Ref Chars.)

float descent Distance from baseline to bottom of glyphs.
(Calculated using Baseline Ref Char and Metrics Ref Chars.)

What features does Dynamic Text have?

Most of the listed features are demonstrated in the DynamicTextExamples scene (folder in the
package: DynamicText/Examples/).

Text size is proportional to world units, and not dependent on screen size in pixels or dpi
resolution.

• For example, if you use an orthogonal camera in Unity with Size=5, it means the total
height of window is 10 units. Dynamic Text with unit size of 2.0 will mean one row takes
vertically 20% of screen so that there will be space for 5 rows of text.

For maximum sharpness, pixel size for text font rendering is dynamically selected to be the
nearest matching size for text world unit size.

• For example, suppose your window height is 512 pixels and you have a camera like in
the previous example. If you make a text with size 1.0, the row height will be 1 unit,
corresponding to 51.2 pixels. The font will be rendered sharp with pixel size of 51.

Dynamic Text component also works with both orthogonal and perspective cameras.
• For perspective cameras, it measures distance from text object to the camera plane.

With the power of trigonometry it figures out what is the correct pixel size for the text
(with its current position and size, measured in world units).

• This is done separately for each different piece of text with varying distances.
• Text can also be set to auto-orient towards camera automatically (like a billboard).

You can choose if text is pixel snapped to keep it sharp when it moves on screen.
• With pixel snapping enabled, sub-pixel position of transform.position will be snapped

to nearest pixel (of currently used screen resolution).

The Dynamic Text component uses Unity's internal font renderer and atlasing.
• So you can use same fonts what you can use with the built-in Text Mesh or GUI Text —

use custom truetype fonts.
• Regular Font Styles are supported: normal, bold, italic, bold and italic.
• Change color dynamically.
• Standard built-in font material & shader is used. No need for custom heavy-weight

shaders.
• Note: There's no support for Rich Text with html-like syntax (for now, at least).

Text can be aligned and anchored, similar to how Unity's built-in Text Mesh (3D Text) works.
• Text can be left-, center- or right-aligned.
• Horizontally text can be left-, center- or right-anchored.
• Vertically text can be upper-, middle-, lower- or baseline-anchored. Dynamic Text

defaults to baseline anchoring for easier working with text (baseline anchor is not
featured by built-in Text Mesh).

You can ask for font metrics and use tabs for alignment.
• The component has baseline, ascent and descent properties.
• You can also get size of the whole text (bounds of the generated mesh).
• Tab size is defined in world units and tab char in text moves to the next tab stop.

The code contains many small tweaks to make it better.
• Mesh is regenerated/reallocated only when necessary. E.g. when there's longer text

than previous frame, or if text properties change (size, style, anchor, alignment, ...).
Previous mesh arrays are reused when possible.

• Dynamic Text is compatible with dynamic batching. It can even combine with built-in text
meshes as same font material and texture can be used with both.

• Aware of different texel sampling between graphics APIs, and adjusts as needed to keep
your text sharp.

• Automatically converts & replaces existing Text Mesh objects if you add a new Dynamic
Text component to them.

• You can update text dynamically, even every frame. See the last screen (10/10) of
example scene (called “interactive demo” in the web site). It has a "text mode" effect
consisting of over 2000 characters updated every frame.
◦ NOTE: When updating text with dynamic content, you should change it using the

textSB string builder field instead of using SetText(string). After you have finished
constructing the new dynamic text string in textSB, call FinishedTextSB(). See the
chapter defining methods and fields for example code.

No native code & small footprint.
• Works with Desktop, Mobile and Webplayer platforms.

(probably with consoles as well, but we haven't tried)
• Supplied as only a small DLL with the component and with bit of C# source for editor

extension.
• No native code — works with the Free version of Unity!

Dynamic Text works also with the new Unity 2D sprites:
• The default font material & shader seems to render using the Default Sorting Layer with

Order 0. So, to make sprites render behind text, you can make a new Sorting Layer and
drag it to be before Default. Or you can use Default Layer for your sprite but set the
Order in Layer to negative value. And, of course, in similar way to force sprites render
front of text.

• If you want to change sorting order of a dynamic text instance in the default sorting layer,
you can make a custom script and adjust value of renderer.sortingOrder

What is it not good for? (Known Issues)
As usual, there are some trade-offs and caveats, and this is not an exception.

Exact font metrics and glyph sizes vary a little bit when the font's actual pixel size is adjusted to
the best match.

• So, if text size varies slowly and smoothly over time, the text "pops" a bit.
• This problem can be alleviated a little bit by using a custom font imported using Smooth

Rending Mode (not Hinted Smooth).
• However, changing text size all the time leads to constant updating or re-generation of

font atlas, so in any case this kind of use is not optimal for this component.

This is not a good choice when combined with a camera moving and rotating freely in 3D.
• For example, if your camera can get very close to text, it can dynamically resize to be

very large on screen. This can lead to constant update of the font texture, which causes
a drop in frame rate.

• 3D-rotating text semi-far from camera can still trigger constant font atlas update, since
the actual size on screen may change all the time. This is basically the same limitation
than with camera-facing text changing size all the time, as mentioned above.

This is not a solution for all your UI needs.
• Dynamic Text is just a component to show only text in your scene, nothing more.
• There's no support for rich text with html-like syntax (for now).

No support for special effects like gradients, drop shadows or outline. (For now.)
• But you can do basic versions of some effects yourself, by using some old tricks. For

example, to make a simple drop shadow: Duplicate your text, setting color to black.
Offset Y down a little bit and Z behind the original text.

• Some support for special effects may be added in a future version.

The automatic pixel-snapping feature always modifies the transform position.
• Because of this, Unity ends up flagging the scene as “unsaved”.

Questions and Answers

But there's GUI Text, and it's not blurry or jaggy like in the examples. Why isn't it enough?
Yes the GUIText is there. But it forces you to work in screen space using absolute pixel
sizes instead of relative units. With GUIText your text will look way too small or way too
big when you move it to a screen with different resolution or dpi than what you used
initially.

Why does my text look garbled?

Verify that the Mesh Renderer has material correctly set up. Normally it should be
correct automatically. If you disable “Auto Set Font Material” setting then it is up to you to
set up the material correctly. (If you want to manually set up the default material for a
custom font, expand the font in Assets view and drag Font Material to Element 0 in list of
Materials of the Mesh Renderer.)

I can't see text, what's wrong?
1. Check that you have a font specified (i.e. Dynamic Text component's Font field
doesn't display "None"). Drag a font there, or click the small dotted circle and select Arial
from the list.
2. Try right-clicking Dynamic Text component in Inspector and choose "Regenerate
Mesh".
3. Make sure the material is correctly set up (see previous question's answer above).
4. As always, make sure rendering of some other mesh doesn't obscure your text.
5. Verify that the Game Object is active (not disabled), and that the Mesh Renderer and
Dynamic Text components are enabled.

Why is the text sometimes blurry in the editor Scene view?
Text in the scene view shows with the size it is currently needed to be displayed sharply
in the camera (game) view, which is the point of this Dynamic Text component. So, the
text is blurry if it is small on the final view (either with small specified size when using
orthogonal camera, or it is far when using a perspective camera). Also, check if your text
is not visible in the camera view and instead of that it's behind the camera. In this case
the text is also clamped to minimum font size in pixels ("Min Font Px Size").

Why is this particular text blurry or jaggy in the game view?
Make sure your text has a reference to the currently active camera. Or, if you have
multiple cameras and text is on a custom layer rendered by one of the cameras, make
sure the text refers to the correct camera which renders that layer. Text size on the
game view is determined with the camera it refers to.

I have some of my own custom UI movement/alignment code. Pixel snapping "fights" with it,
moving each frame. How can I fix this?

Move the DynamicText down in scene hierarchy so that it's a child of the object having
your code (which has custom movement).

Is there garbage collector (GC) problems?
No, in the extent what can be reasonably expected. Dynamic Text allocates memory
only when it needs to enlarge mesh arrays (e.g. if you switch to display a longer text
than what you had previously). Also, if you want to update to dynamically built text from
script code, you should change the text content using the supplied textSB field (String
Builder) and call FinishedTextSB() when you're done. This way there's no leaks of
strings of the previous content.

What if I have performance problems?
First, try these steps:

• Lower your “Max Font Px Size” and maybe don't use that big text in your design.
Big letters take lot of texture space and there's a limit how much you can have. It
seems on some mobile platforms the max atlas may be limited to smaller than
you can get on a desktop machine.

• Use less characters for the “Metrics Ref Chars”. These characters (and the
baseline ref char) are always requested to be in the font atlas texture, so if you
are using a large text size, Unity has to try to fit all of these letters in that large
size to the atlas. So, if for some text you only use numbers, put only
“0123456789” here. Or, with normal text, it may be enough to have only 1-2
lowercase low-hanging characters like 'j' or 'g' and 1-2 full-height capital
characters like O or X.

If that doesn't help, please read the following about other possible situations:
As mentioned and shown in example scene (interactive demo), it is not a good idea to
have a screen with a camera rotating in 3D (see screen 8/10). Also it's not a good idea
to constantly adjust size of a text in 2D either (see screen 5/10). That is, if the final text
size on screen changes constantly due to 3D rotation or changing distance to camera.
This will force Unity to flush and re-create the font atlas often. You can try to alleviate the
problem by lowering the Max Font Px Size of Dynamic Text objects. However, in this
case the text will appear blurry if it gets close to camera. This is one of the cases where
you still might want to use the standard Text Mesh instead. If you need text in varying 3D
angles which is also sharp when close to camera, then you should consider using one of
the font packages which use distance field based font rendering. Note that those
typically don't support dynamic fonts but use bitmapped pre-processed fonts instead,
and they will require use of a custom heavy-weight shader, so what they're good at
comes with their own set of limitations. If you know you need such a thing, here's links to
some assets you might want to check out: Text Mesh Pro, Text Box. (note: we haven't tried
these, so we don't know how good they are in practice)

Does Dynamic Text work with third party GUI packages like NGUI or Daikon Forge?
It isn't officially supported or tested on any such package, so you can assume that the
answer is no. Many GUI solutions have their own renderer system and canvas/camera
logic, which cannot be combined with world space scene nodes like a Dynamic Text
object. However, of course in some cases it can still be possible with some extra work
and scripting, but that's up to you. (See also the next question.)

Does Dynamic Text work with the new uGUI introduced in Unity 4.6?
Not officially, but there is some exceptions. It is possible to have Dynamic Text in a
scene which uses uGUI. But if you want Dynamic Text object to be part of the GUI, then
it will reasonably work only if you use World Space render mode in the Canvas.
Additionally you may have to use only a single camera (no separate UI camera with
dynamic rotation or so). In addition you have to add a script to tweak sorting order of
Dynamic Text objects - for example in C# something like this:
 GetComponent<DynamicText>().renderer.sortingOrder = 1;

http://u3d.as/content/catlike-coding/text-box/2Gn
http://u3d.as/content/stephan-bouchard/text-mesh-pro/7CF

This will allow you to use Dynamic Text as a label or in buttons with uGUI. However, you
still can't use it to represent text with uGUI Input Fields. (See also previous question.)

How to fix this error message: No camera - can't generate mesh?
The Dynamic Text component needs to have a reference to the camera where it is
meant to be visible in. It will automatically grab the Camera.main (first camera with the
"MainCamera" tag) if there is one.

This is just like basic text should work!
That's not a question... but, thanks! That was the goal.

Feedback, Feature Suggestions and Bug Reports
Send by email: contact@strobotnik.com. Write “Dynamic Text” in the subject.

Also from Strobotnik:

Google Universal Analytics for Unity
http://strobotnik.com/unity/googleuniversalanalytics/

Internet Reachability Verifier for Unity
http://strobotnik.com/unity/internetreachabilityverifier/

http://strobotnik.com/unity/internetreachabilityverifier/
http://strobotnik.com/unity/googleuniversalanalytics/
mailto:contact@strobotnik.com?subject=DynamicText

